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Abstract

In this paper, the quarter-car model is used to study the response of the vehicle to profile imposed
excitation with randomly varying traverse velocity and variable vehicle forward velocity. Root-mean-
square response of the vehicle to white and colored noise velocity road inputs is analyzed. In the latter case,
a recently developed subspace-based identification algorithm is used to design a linear shape filter with
output spectrum matching the measured road spectrum. The linear shape filter is used in constructing
charts that illustrate the trade-offs among the passenger comfort, the road-holding, and the suspension
travel as functions of the vehicle forward velocity.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

High-quality simulation of vehicle vibration can only be done with three-dimensional models.
Since the equations of motion for systems with many degrees of freedom can be derived from
computerized algorithms, a good approximation to real vehicle dynamics is possible. However, a
detailed analysis of the ride performance limitations of active and passive suspension systems
needs detailed road modeling analysis and the performance indexes employed in optimal control
laws require road elevations to be known. Thus, it is important to predict vehicle dynamic
response using realistic road models.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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A realistic road model must take into account the correlation between the different axles and
the correlation between parallel tracks. It is generally agreed that typical road surfaces may be
considered as realizations of homogeneous and isotropic two-dimensional Gaussian random
processes and these assumptions make it possible to completely describe a road profile by a single-
power spectral density evaluated from any longitudinal track [1,2]. Then, the spectral description
of the road, together with a knowledge of traversal velocity and of the dynamic properties of the
vehicle, provide a response analysis which will describe the response of the vehicle expressed in
terms of displacement, acceleration, or stress [3].
Active control of vehicle suspensions has been the subject of considerable investigation since the

late 1960s; see, for example, [4–6] and the references therein. Studies concerning the limitations
and potential benefits of active suspensions [7–9] have shown that suspension controllers that
focus on a fixed performance measure offer a limited improvement in performance over
conventional passive suspensions, when the improvement is assessed over the whole range of road
conditions. During driving the character of dynamical interaction between the road and the
vehicle changes dramatically depending on road surface and vehicle velocity. These changes must
be taken into account to ensure optimal (or sub-optimal) acting of the system in every condition.
In order to realize the full potential of active suspensions, the controller should have the capability
of adapting to changing road environments [10,11].
In this paper, first an identification algorithm developed in Ref. [12] is used to model the power

spectrum of a typical road profile by a rational function of reasonably low order from corrupted
spectrum samples. The goal here is to use this approximation for the design of a linear shaping
filter with a white noise input. Once such an approximation is made, the vehicle control problem
can be formulated in standard form. Then, the modeled road spectrum is used in the quarter-car
model to study the random vibration of the vehicle due to road unevenness and variable vehicle
velocity. In earlier work on the analysis of vehicle response, the vehicle velocity was usually
considered as constant. The effect of the change in the vehicle velocity in stationary response to
the profile imposed excitation was investigated in Refs. [13,14].
The preliminary results show that the first-order road displacement model in Ref. [3] is too

simple to predict the random vibration of the vehicle. The trade-offs between the passenger
comfort, the suspension travel, and the road-holding are also illustrated for a range of vehicle
velocities and shape filter orders. The best results are obtained with high orders. The integrated
white noise approximation to the road displacement spectrum [7] yields more accurate results than
those of the low-order fit. But at high speeds, this approximation is also seen to be unacceptable.
2. The quarter-car model with random road inputs

In this section, the quarter-car model is used to study the response of the vehicle to random
road inputs. First, a linear two-degree-of-freedom car model is reviewed. Then, the response of the
vehicle to random road disturbances is analyzed by treating them either as white noise velocity
inputs or colored noise inputs. It is recognized that the quarter-car representation is too simple for
performing a comprehensive analysis of the ride motions of the vehicle. However, even with this
simplified representation, significant insight into the problem can be gained without greatly
complicating the analysis.
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2.1. The equations of motion in state-space form

A two-degree-of-freedom quarter-car model is shown in Fig. 1. In this model, the sprung and
unsprung masses corresponding to the one corner of the vehicle are denoted respectively by ms

and mu: The suspension system is represented by a linear spring of stiffness Ks and a linear damper
with a damping rate Cs; while the tire is modeled by a linear spring of stiffness KT : Since damping
in the tire is typically very small, it is neglected in this study. The parameter values chosen for this
study are shown in Table 1. They are typical for a lightly damped passenger car.
Fig. 1. The quarter-car model of the vehicle.

Table 1

The vehicle system parameters for the quarter-car model [7]

Sprung mass ms 240 kg

Unsprung mass mu 36 kg

Damping coefficient Cs 980Ns/m

Secondary suspension stiffness Ks 16,000N/m

Primary suspension stiffness KT 160,000N/m
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The vehicle is assumed to travel at a constant forward speed denoted by v over a random road
surface. It is also assumed that the tire behaves as a point-contact follower that is in contact with
the road at all times. Then, the equations of motion in the state-space configuration take the form

_x1

_x2

_x3

_x4

26664
37775 ¼

0 0 1 �1

0 0 0 1

�Ks=ms 0 �Cs=ms Cs=ms

Ks=mu �KT=mu Cs=mu �Cs=mu

26664
37775

x1

x2

x3

x4

26664
37775þ

0

�1

0

0

26664
37775Vi;

_X ¼ AXþ BVi; (1)

where Vi is the velocity input and the state variables are defined as follows:
x1: the distance between the sprung and unsprung masses (suspension travel);
x2: the distance between the unsprung mass and the road surface (tire deflection);
x3: the sprung mass absolute velocity;
x4: the unsprung mass absolute velocity.
The primary objective of this study is to investigate trade-offs between the vibration isolation,
the suspension travel, and the road-holding characteristics of the vehicle due to road surface
unevenness and the changes in the velocity of the vehicle. Hence, the vehicle response variables
that need to be examined are:
_x3: the vertical acceleration of the sprung mass;
x1: the suspension travel;
x2: the tire deflection.
Thus, the output can be expressed in terms of the state vector as

Y ¼

�Ks=ms 0 �Cs=ms Cs=ms

1 0 0 0

0 1 0 0

2664
3775

x1

x2

x3

x4

2666664

3777775
¼ CX: ð2Þ

It should be noted that the choice of state variables is rather arbitrary; and different choices yield
the same transfer function matrix GðsÞ ¼ CðsI4 � AÞ�1B from Vi to Y; where In is the n � n

identity matrix.
Passenger comfort requires _x3 to be as small as possible while compactness of rattle space, good

handling characteristics, which are needed during steering maneuvers, and improved road-holding
quality require x1 and x2 to be kept small. With the passive suspension configuration of Fig. 1, it is
a well-known fact that these objectives cannot be met simultaneously [8]. During cornering, the
vehicle is subjected to centrifugal forces. The centrifugal forces cause rolling of the vehicle. In
order to maintain the rolling at tolerable levels, one must keep Ks sufficiently large. Thus, the only
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parameter that can be altered in an optimization study is Cs: decreasing Cs decreases _x3 whereas it
increases x1 and x2: The conflicting three goals can be attained up to a certain extent by employing
an active or semi-active suspension instead of the passive suspension in Fig. 1 [5,7,9,15–18].
2.2. Description of road surface roughness

The description of the road surface as a realization of a stationary random process will enable
the response of a vehicle traversing a given road to be determined by means of the accepted
techniques of the theory of random vibration. In the particular case of stationary random
excitations with a normal distribution and zero-mean value, it is only necessary to compute from
the time histories of the excitations their second-order moments, or in effect their spectral
densities, to obtain a sufficient statistical description of the excitation process. Thus a spectral
description of the road, together with a knowledge of traversal velocity and of the dynamic
properties of the vehicle, will provide a response analysis.
In Fig. 2 [1], spectral density of a typical road; the split power-law approximation

SspðnÞ ¼
kjn=n0j

�2d1 ; 0ojnjon0;

kjn=n0j
�2d2 ; n0pjnjo1

(
obtained by trial and error for the values k ¼ 0:76� 10�5; d1 ¼ 1:6; and d2 ¼ 1:1; and the
integrated white noise approximation [7] defined by

SiwðnÞ ¼ kðn0=nÞ2 (3)
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Fig. 2. The spectral data and its approximate modeling: 	 data, — split power law, – 
 – integrated white noise.
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are shown where n denotes the (spatial) frequency measured in cycles/m. Both the approximations
are made to match the spectral data at the (spatial frequency) n0 ¼ 0:15708 cycles=m: It is clear
that the fit by the integrated white noise modeling is rather poor; in particular at the frequencies
below n0: The problem with the split power approximation is that it cannot be generated by linear

shape filters. Hence, it is not suitable for simulating the response of the vehicle. Besides, it is
unbounded at the zero frequency.
The purpose of modeling a power spectrum by a rational function of reasonably low order is to

use this approximation for the design of a linear shape filter with a white noise input. Then, the
identified road spectrum is used in the quarter-car model to study the response of the vehicle to
random road inputs.
2.3. White noise velocity input

Note that SiwðnÞ in Eq. (3) is the power spectral density of xðlÞ in the road model

d

dl
xðlÞ ¼ 2pn0

ffiffiffi
k

p
nðlÞ; (4)

where nðlÞ is a zero-mean (spatial) white noise process with a covariance function

EfnðlÞnðl þ tÞg ¼ RnðtÞ ¼ dðtÞ: (5)

Here Eð
Þ denotes the expected value and dðtÞ is the unit impulse function. Thus, the road
displacement xðlÞ is modeled by an integrated white-noise process. In this model, the road profile
is adjusted by changing k and n0 in Eq. (3). Plugging l ¼ vt; ZðtÞ ¼ nðvtÞ; and zðtÞ ¼ xðvtÞ in Eq. (4)
and applying the chain rule of differentiation, we get

Vi ¼
d

dt
zðtÞ ¼ 2pn0v

ffiffiffi
k

p
ZðtÞ; (6)

where v is the vehicle forward velocity measured in m/s and ZðtÞ is a zero-mean (temporal) white
noise process with the covariance function:

RZðtÞ ¼ ð1=vÞdðtÞ: (7)

Thus, from Eqs. (1), (2), (6), and (7)

_XðtÞ ¼ AXðtÞ þ 2pn0
ffiffiffiffiffi
vk

p
BeZðtÞ;

YðtÞ ¼ CXðtÞ; ð8Þ

where eZðtÞ is a zero-mean (temporal) white noise process with the covariance function

R~ZðtÞ ¼ dðtÞ: (9)

Recall that for a wide-sense stationary random process zðtÞ; Efz2ðtÞg does not depend on t and it
equals Rzð0Þ: The square-root of Rzð0Þ is called the root-mean square (rms) of zðtÞ and is a measure
of vibration level experienced by the vehicle. If, for example, Vi is assumed to be a zero-mean,
wide-sense stationary random process, then the components of YðtÞ will also be zero-mean, wide-
sense stationary random processes with constant standard deviations which equal to the rms
values of the components of YðtÞ:
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The state covariance matrix RXð0Þ is obtained by solving the Lyapunov equation:

ARXð0Þ þ RXð0ÞA
T
þ vkð2pn0Þ

2BBT ¼ 0: (10)

Then, RYð0Þ and the output spectrum of Y are computed from Eq. (8) as

RYð0Þ ¼ CRYð0ÞC
T (11)

and

SYðbnÞ ¼ Z 1

�1

RYðtÞe�j2pn̂ dt ¼ vkð2pn0Þ
2Gðj2pbnÞGT

ð�j2pbnÞ; (12)

where bn denotes the (temporal) frequency measured in Hz. The square roots of the elements in the
diagonal of RYð0Þ equal to the rms values of _x3; x1; and x2; respectively.

2.4. Colored noise velocity input

Let

_ZðlÞ ¼ eAZðlÞ þ eBnðlÞ;
xðlÞ ¼ eCZðlÞ; ð13Þ

where xðlÞ denotes the road displacement at the longitudinal coordinate l and nðlÞ is a zero-mean
(spatial) white noise process with a covariance function satisfying Eq. (5). In Eq. (13), the
eigenvalues of eA 2 Rm�m are restricted inside the unit circle centered at the origin. The transfer
function eGðsÞ ¼ eCðsIm � eAÞ�1eB (14)

is called the spectral factor of the power spectrum of x computed from Eqs. (5) and (14) as

SxðnÞ ¼ j eGðj2pnÞj2:

In the design of a linear shape filter, one aims to match given spectral data as closely possible as by
suitably selecting the state-space parameters ðeA; eB; eCÞ in Eq. (13). Provided that SxðnÞ is a smooth
function, this aim can be achieved for large filter orders. In the next section, estimation results of
an identification algorithm that uses given spectral data and yields a state-space realization of eGðsÞ
will be presented.
Applying the chain rule of differentiation to l ¼ vt; we can transform Eq. (13) into the time

domain as follows:

_UðtÞ ¼ veAUðtÞ þ ffiffiffi
v

p eBeZðtÞ;
wðtÞ ¼ eCUðtÞ; ð15Þ

where UðtÞ ¼ ZðvtÞ; wðtÞ ¼ xðvtÞ; and eZðtÞ is a zero-mean (temporal) white noise process with a
covariance function as in Eq. (9). The output wðtÞ of the time-domain shape filter (15) is related to
Vi by the equation

Vi ¼ _wðtÞ ¼ veCeAUðtÞ þ ffiffiffi
v

p eCeBeZðtÞ: (16)
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Thus, from Eqs. (1), (2), (15), and (16) the equations of the motion of the vehicle can be written in
state-space form as

d

dt
bXðtÞ ¼ bAbXðtÞ þ bBeZðtÞ;

YðtÞ ¼ bCbXðtÞ; ð17Þ

where

bX ¼
X

U

" #
; bA ¼

A vBeCeA
0 veA

" #
;

bB ¼
ffiffiffi
v

p BeCeBeB
" #

; bC ¼ ½C 0�: ð18Þ

As in Eqs. (10) and (11), the state and the output covariance matrices R
X̂
ð0Þ and RYð0Þ are

obtained from bAR
X̂
ð0Þ þ R

X̂
ð0ÞbAT

þ bBbBT
¼ 0;

RYð0Þ ¼ bCR
X̂
ð0ÞbCT

: ð19Þ

Moreover, SYðbnÞ ¼ bGðj2pbnÞbGT
ð�j2pbnÞ wherebGðsÞ ¼ bCðsInþm � bAÞ�1bB:

2.5. Identification of road spectra

The problem of designing linear shape filters from noisy samples of power spectrum is discussed in
Ref. [12]. In this work, a subspace-based frequency-domain algorithm for the identification of power
spectra from nonuniformly spaced measurements is developed. The details are omitted. When applied
to the spectral data plotted in Fig. 2, this algorithm yields the following linear shape filters:

eG8ðsÞ ¼ LðsÞ 4:35� 10�7
Y7
k¼1

s þ zk

s þ pk

; (20)

where p1;2 ¼ 0:045� 0:163j; p3;4 ¼ 0:007� 0:157j; p5;6 ¼ 0:043� 0:050j; p7 ¼ 0:007; z1 ¼ 4686;
z2 ¼ 0:603; z3;4 ¼ 0:031� 0:163j; z5;6 ¼ 0:009� 0:154j; z7 ¼ 0:0154; and the roll-off factor LðsÞ is
defined by

LðsÞ ¼
10

s þ 10

and eG2ðsÞ ¼ LðsÞ 0:83876
s þ 0:014

s þ 0:042
: (21)

The transfer functions L�1ðsÞ eG2ðsÞ and L�1ðsÞ eG8ðsÞ are the spectral factors delivered by
the algorithm in Ref. [12] by taking noise covariance there equal to the road power
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Fig. 3. The spectral data, its approximate modeling by a shape filter of order 2, and the estimation error: 	 data, o
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spectrum. The roll-off factor slightly affects the spectral factors due to the bandwidth of the
spectral data.
In Figs. 3 and 4, the estimation results are plotted for the shape filters in Eqs. (20) and (21). In

the figures, the estimation error is defined as the absolute value of the difference between the data
and the estimated road power spectrum. In the numerical study, filter orders between two and
eight have been tried; but best results were obtained for m ¼ 8:
Fig. 4 demonstrates that the eighth-order shape filter is capable of capturing the road dynamics

in the entire bandwidth considered. On the other hand, the output spectrum of the second-order
shape filter is rather erratic. Henceforth, it is not suitable model for road profiles. Thus, in the
modeling of road spectra high-order shape filters are suggested. This conclusion will be supported
by a study of the trade-offs in the following section.
3. Stochastic response and the trade-offs

In Fig. 5, the rms vertical acceleration of the vehicle subjected to white and colored noise
velocity inputs with filter orders m ¼ 2 and 8 is plotted as a function of the vehicle velocity. The
rms values were computed by solving Eqs. (10), (11) and (19). This figure reveals that up to
108 km/h the integrated white noise and the eighth-order shape filter approximations yield
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Fig. 4. The spectral data, its approximate modeling by a shape filter of order 8, and the estimation error: 	 data, o
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agreeable responses while the response due to the second-order approximation departs
remarkably from the others in all frequencies. Similar results have been obtained for the rms
suspension travel versus the velocity and the rms tire deflection versus the velocity curves.
In Fig. 6, for shape filters of orders m ¼ 2 and 8 the rms vertical acceleration of the vehicle

subject to colored noise velocity input is plotted versus that of the vehicle excited by white noise
velocity input for the vehicle forward velocity ranging from 0 to 60m/s. These curves are drawn by
varying v: This figure indicates that if the eighth-order shape filter whose output spectrum matches
the road spectrum as close as possible is taken as a basis for comparison, then the second-order
shape filter is not suitable for a study of vehicle random vibrations. Interestingly, the integrated
white noise approximation to the road displacement spectrum yields more accurate results than
those of the second-order fit. But at high speeds, in particular for vX30m=s; this approximation
ceases to be acceptable.
In Figs. 7 and 8, at v ¼ 108 km=h the trade-off curves for the colored noise velocity input case

are displayed with the integrated white noise displacement input. These curves are drawn by
varying Cs and fixing the others in Table 1. The trade-off curves are similar to the trade-off curves
in Ref. [7]. Once more, it is acknowledged that the second-order shape filter is not suitable and the
integrated white noise is somewhat appropriate for the modeling of the road displacement
spectrum. Note with the integrated white noise road displacement model that the vehicle forward
velocity does not influence the shapes of the curves.
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Fig. 7. The relationship between the rms vertical acceleration and the rms suspension travel of the vehicle subject to

white and colored noise velocity inputs for filter orders m ¼ 2 and 8 at v ¼ 108km=h as a function of Cs: — white noise,
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Fig. 8. The relationship between the rms vertical acceleration and the rms tire deflection of the vehicle subject to white
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4. Conclusions

In this paper, a quarter-car model was used to study the response of the vehicle to random
road excitations. The response of the vehicle to random road disturbances was analyzed
by treating them either as white noise velocity inputs or colored noise inputs. In the latter case,
the inputs were generated as the output of a linear shape filter derived directly from the
measurements of the road profile power spectrum by an identification algorithm. The analysis has
shown that second-order shape filters are too simple to predict the behavior of the vehicle
subjected to random excitations. The trade-offs between the variables of interest were also
illustrated for a specific road profile spectrum and a range of velocities with two shape filters. The
best results were obtained for a high-order shape filter. The integrated white noise approximation
to the road displacement spectrum yielded more accurate results than those of the second-order
fit. But at high speeds, in particular for vX100 km=h; this approximation was also seen to be
unacceptable.
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